REARRANGEMENTS OF HYDRAZINIUM SALTS

H.F. Hodson and D.M. Maytum,

(Wellcome Foundation Ltd., Beckenham, England)

B.R.T. Keene

(Medway and Maidstone College of Technology, Kent, England)

(Received in UK 15 December 1971; accepted for publication 28 December 1971)

Radical pathways have been proposed for the Stevens (and related 1,2-electrophilic) rearrangements on the basis of both spectroscopic $(CIDNP)^{1-3}$ and chemical^{1,4} evidence. Analogous base-catalysed rearrangements seemed likely in suitably substituted hydrazinium salts (e.g. I) and it has been reported recently that (I, R = PhCH₂) gives the corresponding (III) on heating with solid sodium hydroxide.⁵

Under these conditions, (I, $R = \underline{p}-NO_2C_6H_4CH_2$) underwent only explosive decomposition, (ascribed to easy oxidation of the $-CH_2NH-1ink$)⁵, but we have found that when treated with potassamide in liquid ammonia this salt decomposes smoothly to give 4,4'-dinitrobibenzyl in fair yield, confirming a radical process in this instance at least. Other salts (some examples are given in Table 1) rearranged to the corresponding N-benzyl-N',N'-dimethylhydrazines in acceptable yields when similarly treated: hydrazone formation⁵ is minimised under these conditions.

The possibility of photochemical decomposition of the nitrogen ylides(II) has been examined. Solutions of (I, R = PhCH₂, \underline{m} -ClC₆H₄CH₂ or \underline{p} -MeC₆H₄CH₂) in aqueous sodium hydroxide (2%) were found to be stable in the dark but on irradiation (Hanovia 450W medium-pressure Hg lamp) conversion into the corresponding (III) occurred rapidly.

No. 4

In neutral aqueous solution the predominant reaction is slow solvolysis: thus, after a solution of (I, R = PhCH₂) had been irradiated for 8 hr, benzyl alcohol (34%) was isolated, with only a trace amount (TLC) of (III, R = PhCH₂). Solutions of (I, R = $p-NO_2C_6H_4CH_2$) in alkali were markedly less stable even in daylight and precipitated 4,4 '-dinitrobibenzyl almost instantly on irradiation: it seems likely that rapid dissociation into p-nitrobenzyl radicals provides a more plausible explanation of the violent decomposition observed previously.⁵ The structures of other, minor products are being examined.

2	Table 1.		
<u>N-R-N,N-Dimethyl-</u> hydrazinium Bromide		<u>Yield (%) of N-R-N',N'-</u> <u>Dimethylhydrazine</u> ^a	
	Method A ^b	Method B ^C	
$R = PhCH_2$	90	36	
$R = \underline{m} - ClC_6 H_4 CH_2$	-	27	
$R = \underline{p} - MeC_6H_4CH_2$	55	65	
$R = p - NO_2 C_6 H_4 CH_2$	o ^d	0	

^a New compounds characterised and analysed (C, H, N) as monomethiodides.

b KNH2-NH3

C Photochemical reaction: yields not optimised

d 4,4'-Dinitrobibenzyl (26%) was formed, together with small amounts of p-nitrobenzaldehyde and some tarry material.

REFERENCES

¹ U. Schollkopf, U. Ludwig, G. Ostermann and M. Patsch, <u>Tetrahedron Lett.</u>, 3415 (1969).
² R. W. Jemison and D.G. Morris, <u>Chem. Commun.</u> 1226 (1969).
³ A.R. Lepley, <u>Chem. Commun.</u> 1460 (1969).
⁴ G.F. Hennion and M.J. Shoemaker, <u>J. Amer. Chem. Soc.</u>, <u>92</u>, 1769 (1970).
⁵ K. Konig and B. Zeeh, <u>Chem. Ber. 103</u>, 2052 (1970).